系集波浪預測技術於離岸卸煤作業之應用

范揚洺¹ 陳家銘¹ Shunqi Pan²

國立成功大學近海水文中心¹
Hydro-environmental Centre, School of Engineering, Cardiff University, Cardiff, UK ²

摘要

準確掌握未來的波浪資訊是管理離岸卸煤作業是否順暢的重要關鍵之一，波浪預測需要考慮之因素包括複雜近岸地形產生之複雜的波浪變化現象及預測模式中所存在的不確定性，可能影響波浪預測結果的準確度。目前單一模式決定性的預測方法，無法完全掌握預測過程中的不確定性資訊，故以單一模式預測所得的所有可能的海象變化有其困難度。又相對於以漁業及航海為對象的大尺度海象預測，管理卸煤作業所需要的是近岸、小區域、高解析精度及更準確的預測。本研究目的為評估離岸卸煤作業系集波浪預測系統之建置可行性與方法，及可達到之預測準確度，研究成果顯示未來6小時內與未來72小時內的系集波浪預測準確率分別達到80%以上與70%以上。

關鍵字：波浪預測、系集方法、風湧浪分離、雷達波浪觀測

一、前言

興達發電廠卸煤碼頭及於興達發電廠離岸約1公里處，於國際航線大型運煤輪直接靠泊卸船，在夏季西南季風與颱風的影響下常常會有難以預期之湧浪(Swell)出現，嚴重影響到煤炭的靠泊時機與卸煤作業安全，且缺乏預測之海象資訊易造成無法卸煤，致使儲煤場存煤量不足，甚至因缺煤降載產生巨額損失。

準確掌握瞬時與未來的海象資訊是管理卸煤作業是否順暢的重要關鍵之一，為了進一步達成本文目標，需要考慮之因素有：第一，卸煤碼頭位於近岸，波浪預測模式網格必須包括因局部地形水深變化影響產生之波浪演化(Swelling)、折射(Refraction)、繞射(Diffraction)等波浪現象。第二，預測模式中存在著許多不確定性，包含初始資料的誤差或模式中的缺陷，皆可能影響波浪預測結果的準確度。目前單一模式決定性的預測方法，無法完全掌握預測過程中的不確定性，同時亦無法提供預測過程中的不確定性資訊，故以單一模式預測所得可能的海象變化有其困難度。因此，相對於以漁業及航海為對象的大尺度海象預測，管理卸煤作業所需要的是近岸、小區域、高解析精度及更準確的預測。

因此本研究目標為提供興達發電廠離岸卸煤作業波浪預測系統建置可行性與方法及可達到之預測準確度，明確具有未來72小時興達發電廠離岸卸煤碼頭之波浪預測資訊，作為未來建置興達發電廠離岸卸煤作業安全資訊決策系統重要參考依據。

二、文獻回顧

改進海洋波浪預測，一直是世界各國海洋相關單位所努力的主要目標。為了要改進波浪預測，最直接的方法是改進數值模式的準確度，其中包含改進初始場(Initial Field)、提高模式解析度或是引進更複雜的物理參數化過程。但因為波浪具有混沌的特性且數值預測系統中存在著非線性過程，使得誤差在數值波浪預測模式中會累積，任何微小的變化，皆有可能導致預測結果產生巨大的差異，最後導致模式預測的結果失準。另外，預測系統中存在著許多不確定性，包含初始資料的誤差或是模式中的缺陷，皆可能造成模式預測結果的變化。若數值波浪預測為單一模式預測，期望由單一的初始資料，獲得最佳之模式預測結果。這種決定性的預測無法掌握預測過程中的不確定性，同時亦無法提供預測過程中的不確定性資訊，因此期望單一預測(Deterministic Forecast)掌握所有可能的海象變化有其困難度。

系集預測(Ensemble Forecasting)的發展是為了彌補單一模式預測的不足，藉由多個不同的系集成員(Ensemble Member)預測，期望能包含模式預測的不確定性，並且將不確定性量化，以提供未來的預

本研究於伺服器電腦上建立波浪模式之計算模組，為了有效率的進行波浪預測，又網格解析度與時間步長(Time Step)的搭配必須滿足CFL條件，即流體質點在一個時間步階Δt內，不能流過一個空間大於網格的距離Δx。因此本研究採用巢狀網格的進行波浪模擬，由深海計算到近岸共分為三層，第一層深海計算範圍為北緯10度至北緯40度，東經110度至東經140度，網格解析度為0.25度，如圖1所示。圖2為第二層計算範圍，北緯21.5度至北緯25.5度，東經118.5度至東經122.5度，網格解析度為0.05度。第三層計算範圍為興達發電廠外海卸煤碼頭附近海域，網格解析度為500公尺，如圖3所示。第一層與第二層的地形水深資料使用美國 NOAA(National Oceanic and Atmospheric Administration)的國家地理物理資料中心NGDC(National Geophysical Data Center)的全球陸地與海底地形資料ETOPO1，資料範圍涵蓋整個地球，資料格點間距為1弧分；第三層的地形水深資料部分，由於興達發電廠外海卸煤碼頭水深資料範圍為不規則形狀，因此第三層的地形水深資料整合興達發電廠外海卸煤碼頭水深資料與ETOPO1。模式運算的地形資料範圍與空間解析度依照數值波浪模式的範圍與空間解析度進行設定。

三、系集波浪預測模式之建立

系集波浪預測模式執行程序分為三個步驟，分別為前處理、波浪計算及後處理。前處理包括波浪模式建立、地形水深資料與大氣模式數值分析及輸入程序建立及系集方法建立；波浪計算為每日自動下載風場資料(GFS、GSM、WRF)、驅動波浪模式產生相對應之波浪預測，再經由系集計算後產生出系集波浪預測資料；後處理為波浪預測資料後處理，並展示於指定界面。

(一) 數值波浪模式建置

由於興達發電廠近岸碼頭地形水深特殊，波浪傳遞過程會產生淡化，波浪與波的非線性交互作用(Wave Wave Nonlinear Interaction)，波浪受風之成長、碎波(Wave Breaking)與底床摩擦波浪能量衰減及受到風流與地形變化而產生之頻率位移與折射等現象，SWAN模式考慮上述波浪在時間與空間領域中變化的現象，因此本研究決定採用SWAN波浪模式。SWAN波浪模式的控制方程式為求解二維的波浪作用力平衡方程式(Action Balance Equation)，如下式：

$$\frac{DN}{Dt} = \frac{\partial N}{\partial t} + \frac{c}{g} \cdot \nabla N = \left(\frac{S_{tg} + S_{ag} + S_{di}}{g} \right)$$ \hspace{1cm} (1)$$

其中N為方向波譜(Directional Spectrum)，其在時間上的變化與空間上的變化來自於三項源函數的綜合效應。這三項源函數為：(a)大氣傳輸至波浪的能量通量，(波浪不同頻率分量因為非線性交互作用導致的波能於頻率及方向上的重新分佈)以及(白沫效應，底床摩擦及碎波現象所導致的波能減散)。這三項源函數項皆經過十年來海洋科學家現場觀測與實驗室實驗的校正，已經逐漸能夠描述波浪演變的物理機制，在模擬結果上也越來越接近觀測值。目前同時被應用於預報模式與作業化模式。在波浪成長與減消之源函數中，SWAN模式提供了許多選擇，包括波浪在深海之風浪線性成長項、風浪指數成長項、波浪減消項及非線性交互作用項，波浪傳遞於中間性水深時則需考慮底床摩擦項，以及波浪在近岸淡水處，因碎波形成之碎波消耗及淡水時所產生之非線性效應等。
(二) SWAN波浪預測模式率定

參數率定為波浪預測模式應用前之基本步驟，由於波浪預測模式中有許多經驗以及可調整之參數，其參數值為透過觀測資料回歸所獲得；但不同海域必須對參數作進一步的率定，使其適用於特定海域。通過率定後之模式參數應與實際波浪觀測作比較，以驗證模式及參數值之可靠性。因此，參數率定與驗證為模式應用於特定海域之必要程序。Lee et al. (2009)整合參數敏感度分析與ARS(Adaptive Random Search)法獲得的數值模式校驗方法對WAVEWATCH III數值波浪模式進行校驗。數值波浪模式中包含經驗參數，而這些參數必須由實際計算與實測資料的比對後才能率定出適合之參數值，因此為了解決模擬波浪，依據Lee et al. (2009)提出的率定方法，配合雷達波波位計之波浪觀測資料進行參數率定。

又依據SWAN波浪模式使用者說明手冊指出，影響模式輸出結果最為顯著之經驗參數，選取的參數為在第三代模組採用的Westhuyzen組態中Cavaleri和Malanotte-Rizzoli (1981)波浪成長項比例係數與底床磨損項採用的JONSWAP公式中磨擦係數兩個模式參數進行經驗參數率定。

率定後之示性波高時序列比對如圖4所示，黑色點表示観測站示性波高資料；藍色虛線表示模式採用初始設定參數的計算結果，紅色虛線表示模式採用率定後參數的計算結果，圖中顯示參數率定前的計算結果高估，參數率定後的計算結果不但變化趨勢一致，計算值與實測值也接近。

(三) 系集方法

為準確預測興達電廠臨海的海象資訊，進而掌握未來的海象動態以供防範安全靠泊及船期安排，本研究建立系集波浪預測模式，以彌補現有單一模式預測模式的不足。系集預測分為參數系集與模式系集兩種：參數系集為改變单一數值模式的參數值後產生系集預測成員；模式系集則為利用不同的數值模式模擬結果做為系集預測成員。由於本研究以建立興達電廠海域作業化系集預測為目標，因此高準確度的風場資料才足以描述特定水域波浪變化，評估實際上可取得已作業化的風場資料包括GFS(Global Forecast System)大氣模式、GSM(Global Spectral Model)大氣模式及WRF(Weather Research and Forecast)大気模式，三種大気模式簡述如下：

GFS大気模式是由全球預報系統產生，此大気資料系集系統所提供大気預報資料空間解析度為0.5度，資料範圍涵蓋全球，時間解析度在預報時間12小時內為3小時，預報時間12小時外為6小時，預報長度為72小時；GSM大気模式是全球頻譜模式產生，此大気資料系集系統所提供大気預報資料空間解析度為0.5度，資料範圍涵蓋全球，時間解析度為6小時，預報長度為72小時；WRF大気模式由10公里解析度預報模式所產生的氣象資料空間解析度分別為45、15及5公里，時間解析度為1小時，預報長度為72小時。

上述三種作業化大気模式做為波浪預測模式驅動力產生三個系集波浪成員，再以系集預測(Ensemble Mean)求得系集波浪預測資料。
(四) 潮浪與風浪預測流程

由前人的研究與實務經驗證實系集波浪預測可彌補單一模式預測的不足，因此本研究採用多模式系集預測，即上述三種作業化大氣模式作為波浪預測模式動力，再以巢狀嵌合運算技巧應用於興達發電廠海域波浪預測模式系統，模擬得到興達發電廠附件海域波浪資訊，預測作業流程如圖5所示，其中圖中綠色字體部分不屬於本研究工作項目，包含大氣模式啟動與產出預測風場，發布未來72小時風場資料。

![圖5 系集波浪預測作業流程圖](image)

波浪模式計算在大氣模式啟動後的5小時開始下載風場資料，下載後再依據大氣模式氣象參數網格架構，轉置為適用於波浪模式計算網格架構所需之風場資料。為配合地形水深的空間解析度，本研究以降尺度(Downscaling)方法獲得500公尺高解析度風場資料。風場資料準備完成後隨即進行系集波浪計算，最後產出潮浪與風浪預測產品。預測時程的規劃是每日00UTC、06UTC、12UTC、18UTC自動執行4次預測，亦即臺灣時間每日凌晨2點、上午8點、下午4點及晚上8點開始執行預測，計算完成後產出未來72小時波浪資訊(示性波高、平均週期、尖峰週期及波向)、潮浪與風浪預測資訊(示性波高、尖峰週期及波向)。

波浪觀測儀器系統主要功能為每15分鐘觀測波浪一次，每次擷取數據完畢隨即進行傳輸、分析、自動資料管理，並更新即時資料顯示。分析內容包含示性波高、平均週期、尖峰週期及主波向等。

依據颱風與西南氣流下之觀測結果，顯示MIROS雷達波位水位計在二情況下之觀測結果均良好，而Finetek雷達波位水位計在蘇迪勒颱風的強烈風雨影響下產生多數雜訊，但在西南氣流降雨影響下，雜訊仍在接接受範圍，結果亦良好。雖然颱風警報期間停止錄製作業，但颱風來臨後有可能出現強烈風雨，且颱風期間的波浪觀測資料對卸煤碼頭未來的營運有重要參考依據，因此未來建置時選用MIROS雷達波位水位計較為適宜。

四、波浪觀測資料收集

(一) 波浪觀測儀器系統測試

為了實現收集波浪，且即時提供波浪資訊，以作為準確度測試之依據，又為了避免海生物附著影響資料收集與品質，本研究採用三只雷達波位水位計收集波浪資料。

(二) 觀測資料管理

引用錯誤資料的危險比沒有資料更為嚴重，本研究為了確認觀測資料的正確性，對即時觀測資料進行品管，品管標準包括：一為依據雷達波位水位計觀測結果的雜訊多寡品管來決定是否剔除不合理的觀測資料，如圖6，MIROS雷達波位水位計的波位資料比例維持在0.95以上，但另兩只Finetek雷達波位水位計的波位資料比例明顯降低，直到颱風後才逐漸恢復，因此颱風期間僅有MIROS雷達波位水位計的
觀測資料可以採用：二為觀測資料於前後時刻是否有連續性；三為依據一維波譜的能量大小，意即能量小代表以風浪為主，能量大時才有可能流向存在，如圖7，104年12月4日19時的觀測尖峰週期是10秒，但發現一維波譜的能量遠小於0.1 m²/Hz，因此此時的尖峯週期是錯誤資料。

(二) 準確度測試結果

以臺灣時間每日凌晨2點、上午8點、下午14點及晚上8點自動執行4次預測的結果與前述有效樣本分別計算6小時與12小時的平均絕對百分比誤差。測試期間的6小時海象資訊波譜值相對實測值準確度如圖8，縱軸為每日的平均絕對百分比誤差，橫軸單位為日，全部天數的平均絕對百分比誤差分別為示性波高14.9%與平均週期7.5%；72小時海象資訊波譜值相對實測值準確度如圖9，縱軸為每日的平均絕對百分比誤差，橫軸單位為日，全部天數的平均絕對百分比誤差示性波高22.6%與平均週期8.7%。由於示性波高的有效樣本相對平均週期少，故圖8與圖9的示性波高之每日平均絕對百分比誤差僅分佈在少數天數。

五、預測準確度測試

(一) 預測準確度測試程序

本研究自104年12月1日至31日期間執行連續一個月的預測準確度測試，且每日4次即時提供波浪預測資料及每日1次提供前一日的波浪觀測資料。於預測未來72小時海象資訊中，分別檢測未來6小時內與未來72小時內的波浪預測值相對實測值準確度，其中測試有效樣本需示性波高週大於1.0公尺或尖峯週期值大於5秒，符合的有效樣本共527筆，有效樣本數超過總筆數的7成。

預測準確度的評估以平均絕對百分比誤差 (Mean Absolute Percent Error, MAPE)作為檢測指標，公式如下：

$$MAPE = \frac{1}{M} \sum_{k=1}^{M} \frac{|x(k) - x'(k)|}{x(k)} \times 100\%$$ (14)

其中 $x(k)$ 為實測資料；$x'(k)$ 為模擬資料；M 為樣本數。
五、結論

興達發電廠海域之系集波浪預測系統已完成建立並完成率定，系統每日自動執行4次預測，預測未來72小時波浪資訊(示性波高、平均週週、最大週週及波向)，海浪與風浪預測資訊(示性波高，最大週週及波向)。經由104年1月1日至31日期間執行預測準確度檢測，結果顯示6小時海象資訊預測準確率超過80%，72小時海象資訊預測準確率超過70%。

波浪觀測儀器系統安裝與測試完成後每15分鐘即時提供興達發電廠波浪資料，以作為無輸進出港決策之依據。進一步比較MIROS雷達波水位計與Finetek雷達波水位計觀測性能，顯示MIROS雷達波水位計在颱風與西南氣流影響下皆有良好的觀測品質。

六、參考文獻